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A dynamical model to predict the Covid-19 in Spain  

The model used to predict the Covid-19 evolution in Spain is based on the classical 

Kermack-Mackendrick models. These models provide a coupled system of three 

differential equations for the main variables of an epidemic: susceptible, infected and 

recovered populations.  

The model here proposed generalises these models by including constant delays, thus 

the model continues being a coupled system of differential equations.  

In addition, the Jay W. Forrester methodology, developed in the MIT and generalised in 

the “Escola d’Investigació Operativa i Sistemes de la ciutat de Valéncia” is used. This 

methodology uses a universal language, represented by the hydrodynamic diagram 

(Section 1), to build dynamical models of complex systems.  

The model presented has input variables or parameters (whose values must be provided) 

and output variables (Section 2) computed by the system of differential equations 

(Section 3). To get the parameter values for Spain the model is calibrated by using the 

experimental data provided by the Spanish Health Ministry (Section 4). We also provide 

a day to day model update, predicting the infected population values: at short time term 

for the next three days, and at long time term computing the day and the value of the 

maximum infected population (Section 5). For any other information, please contact the 

authors through their electronic mails. 
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1. Hydrodynamic Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Model variables 

2.1. Input variables or parameters: 

kq: susceptibility rate  

τa: continuum susceptible-infected populations interaction delay  

τb: continuum susceptible-recovered populations interaction delay 

ka: susceptible-infected populations interaction rate 

kb: susceptible-recovered populations interaction rate 

τf: continuum infected population deaths delay  

kf: infected population deaths rate 

τr: continuum recovered population delay 

kr: recovering population rate 

 

2.2. Output variables (with equation): 

q(t): country population (Spain) 

h(t): susceptible population flow 
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p(t): susceptible population 

c(t): infection flow 

e(t): infected population 

f(t): deaths flow 

fa(t): cumulated deaths 

r(t): recovered population flow 

s(t): cumulated recovered population 

 

3. Model equations 
𝑑𝑞(𝑡)

𝑑𝑡
= −ℎ(𝑡)  

ℎ(𝑡) = 𝑘𝑞 · 𝑞(𝑡)  
𝑑𝑝𝑡)

𝑑𝑡
= ℎ(𝑡) − 𝑐(𝑡)  

𝑐(𝑡) = 𝑘𝑎 · 𝑎(𝑡) + 𝑘𝑏 · 𝑏(𝑡)  

𝑎(𝑡) =
1

𝜏𝑎
𝑝(𝑡) · 𝑒(𝑡)  

𝑏(𝑡) =
1

𝜏𝑏
𝑝(𝑡) · 𝑠(𝑡)  

𝑑𝑒(𝑡)

𝑑𝑡
= 𝑐(𝑡) − 𝑓(𝑡) − 𝑟(𝑡)  

𝑒𝑎(𝑡) = 𝑒(𝑡) + 𝑓(𝑡) + 𝑟(𝑡)  

𝑓(𝑡) =
𝑘𝑓

𝜏𝑓
𝑒(𝑡)  

𝑟(𝑡) =
𝑘𝑟

𝜏𝑟
𝑒(𝑡)  

𝑑𝑠(𝑡)

𝑑𝑡
= 𝑟(𝑡)  

𝑑𝑓𝑎(𝑡)

𝑑𝑡
= 𝑓(𝑡)  

𝑑𝑐𝑎(𝑡)

𝑑𝑡
= 𝑐(𝑡)  

 

 

4. Model calibration 

The model is calibrated by using the experimental data corresponding to 

the ca(t), e(t), fa(t) and s(t) variables. They are provided day to day by the 

Spanish Health Ministry, which can be found in the link: 

 

“https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov-

China/situacionActual.htm” 

  

https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov-China/situacionActual.htm
https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov-China/situacionActual.htm


The model is implemented in finite differences in SIGEM, developed by 

Antonio Caselles, and the model calibration is made by the genetic 

algorithm that SIGEM contains. 

 

First of all, the comparison between the experimental data of the infected 

and the accumulated infected populations respect to the corresponding  

theoretical values of the calibrated model is presented. The comparison for 

today is presented in Figure 1: 

 

 
 

Figure 1: Right: Infected population (dots) and the one predicted by the calibrated 

model (curve) versus time in days (R
2
=0.999). Right: Accumulated infected population 

(dots) and the one predicted by the calibrated model (curve) versus time in days 

(R
2
=0.999). 

 

Remark: The determination coefficient R
2 

varies between 0 and 1. The 

closer the unit the better the model fits the considered reality. 

 

5. Short and long time term prediction  

The prediction objective at short time term is to provide the infected 

population estimation for the next three days, that is: 

 

Days Infected population Acumulated infected 

15/04/2020 91212 184182 

16/04/2020 92627 188962 

17/04/2020 94151 193807 

 

The prediction objective at long time term is to find the infected population 

peak: the day which the infected population starts to decrease from. See 

Figure 2, which provides a prediction for 105 days, starting from January 

31: 
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Figure 2: Left: Infected population prediction (curve) versus time in days. Right: 

Accumulated infected population prediction (curve) versus time in days (the first day is 

2020 January 31).  

 

The collection of data under different conditions, such as tests or 

asymptomatic infected, breaks the model trends of the last days: Figure 2 

shows the absence of an infected population peak, and a return to an 

increasing trend future.  

 

6. Comments 

Take into account that the model just provides estimations but not exact 

values, for both short and long time term predictions. In addition, these 

predictions can change by considering the incorporation of new data in the 

model calibration. The model can be improved by: 

 

(a) Formulating it as a stochastic model, that is, by providing every day 

predictions with confidence intervals. This improvement would afford 

more reliability to the model.  

(b) Introducing the political decisions as influences on the parameters. 

Thus, the model could be a ruling tool for future similar crises. 

 

These improvements will be tried in the collaboration with more scientists, 

taking into account the present restrictions due to the crisis. For similar 

comparable approaches see also the following links: 

https://www.systemdynamics.org/covid-19 

https://covid19.webs.upv.es 

https://biocomsc.upc.edu/en/covid-19  
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